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The lattice Boltzmann equation method in two dimensions was used to analyse
natural convective flows. The method was validated with experiments in an open
cavity with one of the vertical walls divided into two parts, the lower part conductive,
the upper part and all the other walls adiabatic. An upward thermal boundary layer
formed near the conductive wall. This layer gave way to a wall plume. The numerical
results compared well with experiments in the laminar (Ra = 2.0 × 109) and transition
(Ra = 4.9 × 109) regimes. The behaviour of the starting plume was numerically studied
for Rayleigh numbers Ra from 106 to 4.9×109. The wall plume grows in three stages:
in the first with constant acceleration, in the second with constant ascending velocity
and in the third with negative acceleration due to the presence of the top boundary
layer. The acceleration of the first stage and the velocity of the second both scale
with the Rayleigh number.

1. Introduction
The lattice Boltzmann equation (LBE) method has proved in recent years to be

a valuable computational fluid dynamics method (Benzi, Succi & Vergassola 1992;
Chen & Doolen 1998; Succi 2001). The origin of this method lies in the lattice gas
cellular automata (Hardy, de Pazzis & Pomeau 1976; Frisch, Hasslacher & Pomeau
1986; Doolen 1990). In these models the particles move synchronously in a discrete set
of directions defined by the geometry of a lattice. It can be shown that the averaged
occupation numbers, that is the ensemble-averaged distribution function, obey a
Boltzmann’s transport equation and that the averaged density and velocity satisfy
similar equations to those of Navier–Stokes (Frisch et al. 1987). The LBE method
recognizes that Boltzmann’s transport equation is a computational tool that can be
solved on the lattice (Higuera, Succi & Benzi 1989; Higuera & Jiménez 1989; Chen,
Chen & Matthaeus 1992). The collision term of this equation can be simplified using
the Bhatnagar, Gross, Krook (BGK) approximation (Bhatnagar, Gross & Krook
1954) where the distribution function relaxes to a local equilibrium with a constant
relaxation time (Chen et al. 1992; Koelman 1991; Qian, d’Humieres & Lallemand
1992).

The LBE method has been successfully employed in the computational solution of
problems with mass and momentum conservation. Problems where energy transport
plays a dominant role are still a challenge (Succi 2001), although there have been
interesting propositions beginning with those of Massaioli, Benzi & Succi (1993)
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and Benzi et al. (1994). A concise review of the different methods for dealing with
temperature can be found in Lallemand & Luo (2003a, b).

This paper deals with the application of the LBE method to the formation and
development of a wall plume in a cavity with a partially heated wall. The problem of
energy transport is approached by using two coupled fields, one for the distribution
of particles and another for the temperature (Shan 1997; Buick & Greated 1998;
Inamuro et al. 2002).

Turner (1962) discussed a model of starting free plumes generated by a local
source of buoyancy that combines a front thermal or vortex ring with a steady
turbulent plume solution. Experimental analysis of laminar starting free plumes has
been carried out by Shlien & Boxman (1981), Moses, Zocchi & Libchaber (1993) and
Kaminski & Jaupart (2003). Moses et al. found a constant ascending plume velocity
while Kaminski & Jaupart found that the formation of the plume can be divided
in three stages depending on the heat source distance. Both studies found that the
ascending velocity scales with a power law of the Rayleigh number. Wall plumes are
a particular case of thermal plumes as discussed by Sangras, Dai & Faeth (2000).
They have been experimentally studied by Tovar, Rojas & Cedillo (2004).

The paper is divided as follows. Section 2 presents the LBE method with energy
transport and introduces a body force and boundary conditions. The experimental
setup and the relevant dimensionless parameters and quantities needed for its
description are discussed in § 3. This is followed by the validation of the numerical
method and the analysis of the starting wall plume for Rayleigh numbers in the range
of 106 to 4.9 × 109. Some concluding remarks are presented in § 5.

2. The lattice Boltzmann equation
For energy transport, the LBE method is an iterative scheme where the cavity is a

lattice and at each site of this lattice a set of particle and temperature distribution
functions are defined. These distributions satisfy two coupled transport equations,
which together with appropriate boundary and initial conditions lead to the solution
of various heat transport phenomena and in particular natural convection in a
partially heated cavity.

The particle distribution functions fi(r, t) are defined as the probability of a particle
being at a site r on a lattice at time t moving with velocity ci with i = 0, . . . , b − 1.
The b velocities are given by the symmetry of the lattice. In what follows the
D2Q9 will be used. It is a two-dimensional square lattice where b = 9, c0 = (0, 0),
c1 = (1, 0), c2 = (0, 1), c3 = (−1, 0), c4 = (0, −1), c5 = (1, 1), c6 = (−1, 1), c7 = (−1, −1),
and c8 = (1, −1). That is, particles can be at rest, moving along the axes to their
nearest neighbour with speed 1 or along the diagonals to their next nearest neighbour
with speed

√
2. In the BGK approximation, the particle distribution functions obey

the transport equation

fi(r + �tci , t + �t) − fi(r, t) = −�t

τ

[
fi(r, t) − f

(eq)
i (r, t)

]
, (2.1)

where i = 0, . . . , b − 1, �t = 1, τ is the relaxation time related to the viscosity and
f

(eq)
i is the local equilibrium distribution given by

f
eq
i (r, t) = tiρ

[
1 +

ciηuη

c2
s

+
uηuξ

2c2
s

(
ciηciξ

c2
s

− δηξ

)]
. (2.2)
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In this expression ρ and u are the number density and velocity defined by

ρ(r, t) =

b−1∑
i=0

fi(r, t), u =
1

ρ

b−1∑
i=0

fi(r, t)ci , (2.3)

and the subindices η and ξ denote the components of the vector quantities with the
usual convention of a sum over repeated subindices. Also ti =4/9, 1/9 and 1/36 for
|ci | =0, 1 and

√
2 respectively and δηξ =1 if η = ξ and zero otherwise (Qian et al.

1992). Finally, cs =1/
√

3 is the speed of sound and the viscosity ν is related to the
relaxation time by ν = c2

s (τ − τ0) with τ0 = 1/2. Since ν > 0, τ > τ0.
The temperature T is defined by

T (r, t) =

b−1∑
i=0

Ti(r, t) (2.4)

where Ti are the temperature distribution functions that obey the transport equation

Ti(r + �tci , t + �t) − Ti(r, t) = −�t

τ
T

[
Ti(r, t) − T

eq
i (r, t)

]
. (2.5)

In this expression, τ
T

is the relaxation time for the temperature field and T
(eq)
i is the

local equilibrium temperature distribution given by

T
eq
i (r, t) = T ti[1 + 3ci · u]. (2.6)

The temperature T satisfies a diffusion equation with a thermal diffusivity α given by
α = c2

s (τT
− τ0). Since α > 0, τT > τ0 (Guo, Shi & Zheng 2002).

Natural convection can be simulated by adding a body force gi in the vertical
direction y to equation (2.1) that has the form

gi(r, t) = 3tigβ(T (r, t) − T0)ciy. (2.7)

In this expression ciy is the vertical component of ci , g is the acceleration due
to gravity in the lattice, β is the thermal expansion coefficient and T0 a reference
temperature. This body force does not contribute to the density but it does change
momentum.

Finally, a way to implement boundary conditions on adiabatic and conductive
walls must be specified. For the particle distribution functions a no-slip condition
is used by simply reversing the direction of the incoming distributions at the walls,
known as a bounce-back condition. Although other boundary conditions can also
be used (Inamuro, Yoshino & Ogino 1995; Inamuro 2002), we found the bounce-
back boundary conditions to be numerically stable. For the temperature distribution
function, adiabatic walls are simulated by putting the temperature at the sites of the
walls equal to the temperature at the nearest site inside the cavity. This guarantees a
zero temperature gradient. On the other hand, the site in contact with the conductive
wall assumes the specified temperature which, if needed, can change in time.

3. Experimental setup
The experimental cavity is shown schematically in figure 1. It is filled with water

initially in thermal equilibrium at a temperature T0. The top of the cavity is open to
the atmosphere while the right and bottom walls are adiabatic. The left-hand wall is
divided in two parts: the upper part is adiabatic while the lower is conductive (shown
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Water at T0

Wall at Tw

Starting plume

B

L

L0

Figure 1. Schematic view of the cavity. The black zone represents the conductive heated wall, the
rest of the walls are adiabatic and the top of the cavity is open to the atmosphere. The cavity has
a breadth of 0.202 m and B = 0.34m, L= 0.65m and L0 = 0.36m.

in black in the figure). The front and back walls of the cavity are glass sheets that allow
visualization of the convective flow using the schlieren technique (Tovar 2002). The
experiment started when the conductive wall was heated externally; its temperature
which was initially T0 relaxed to Tw in the first few seconds of the experiment. An
upward thermal boundary layer was formed near the conductive wall. This layer gave
way to a wall plume with instabilities travelling upwards in the thermal boundary
layer depending on the value of the Rayleigh number.

For natural convection the important dimensionless parameters are the Rayleigh
Ra and Prandtl Pr numbers defined by

Ra =
gβ�T L3

0

αν
and Pr =

ν

α
, (3.1)

where g is the acceleration due to gravity, β the thermal expansion coefficient,
�T = Tw − T0, L0 the characteristic length (the height of the conductive wall), α the
thermal diffusivity, and ν the viscosity. For water Pr= 6.2.

A schlieren system with a laser light source, two parabolic mirrors of 0.7 m diameter
and a high-resolution video camera was used to record the formation of the thermal
boundary layer and the starting wall plume for Ra1 = 2.0 × 109, Ra2 = 4.9 × 109 and
Ra3 = 9.2 × 109 that correspond to laminar, transition and turbulent regimes, respec-
tively (Tovar et al. 2004).

The numerical simulations were performed in a two-dimensional version of the
experimental cavity. The upper free surface of the experimental setup was replaced by
a rigid wall at a constant temperature equal to the initial temperature T0 of the fluid.
In the LBE method T ∈ [0, 1] so T0 ∼ 0. In the experiments the Rayleigh number was
varied by changing �T and in the numerical simulations by changing L0 keeping
L0/L and B/L fixed. The experimental and numerical results can be compared by
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using the dimensionless quantities defined below with an asterisk:

x∗ =
x

L
, y∗ =

y

L
, t∗ = t

α

L2
0

, (3.2)

u∗ = v
L0

α
, v∗ = u

L0

α
, T ∗ =

T − T0

Tw − T0

. (3.3)

In these expressions, (x, y) is the position of a point in the cavity measured in metres
in the experiment and at lattice sites in the numerical simulations, t is time in seconds
and in number of updating steps in the experiments and simulations respectively.
Also u and v are the velocities in the x- and y-directions respectively and their units
follow from the previous ones. Finally the temperature T is measured in degrees
Kelvin in the experiment and is a number between 0 and 1 in the simulations. In
what follows, we have chosen to present all the results in the more familiar units of
the experiment.

4. Experiments and simulations
Numerical simulations were carried out, for the three Rayleigh numbers mentioned

before, by iteratively solving equations. (2.1) and (2.5) on a D2Q9 finite lattice with
the appropriate boundary conditions. At t = 0 homogeneous particle and temperature
distribution functions with u = 0 and T0 were chosen and the conductive wall was
then heated as follows. In the experiments, the temperature of the wall at t = 0 s was
T0 and then increased during the first few seconds to Tw . The data obtained from
the thermocouples on the conductive wall can be fitted by an exponential relaxation
from T0 to Tw according to

T (l) =

{
T0 if t < t0(l),

T0 + (Tw − T0)(1 − exp[−(t − t0(l))/σ ]) if t � t0(l),
(4.1)

where 0 � l � L0 and σ is a relaxation time which together with t0 may be found
from the experimental data (Tovar 2002; Barrios 2003). In the numerical simulations,
the initial temperature change in the conductive wall mimics the experiment; T0 ∼ 0,
Tw ∼ 1 and σ and t0 are evaluated from the experimental data.

The isotherms found numerically are compared with the images obtained with
the schlieren technique in the experiments for Ra1 in figure 2. In (a) and (b) a slow
thickening of the thermal boundary layer due to the gradual heating of the conductive
wall can be observed. Fluid at a temperature T0 is slowly incorporated into the lower
part of the boundary layer. The incipient formation of the starting plume at y = L0

can also be observed. The starting plume is characterized by an ascending vortex
that grows with time. The numerical prediction of the vortex shape and position
compares well with the experimental results. In the lower part of the vertical wall
some travelling instabilities were observed. They are manifested as a local thickening
of the thermal boundary layer in figure 2(g). For this Rayleigh number the numerical
simulations were performed on a lattice of 1005 × 1895 sites which corresponds to
a space resolution �x (distance between nearest neighbour sites) of 3.38 × 10−4 m
and a time resolution �t of 3.15 × 10−3 s. Since the thermal boundary layer has an
approximate thickness of 4 × 10−3 m it is satisfactorily resolved by the simulation.

A quantitative comparison between experiments and simulations can be obtained
by following the topmost position of the wall plume. In the experiments, it is found
from the analysis of the digitized images and the error is estimated to be of the order
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y = 0.36 m

y = 0.36 m

(a) (b) (c) (d )

(e) ( f ) (g) (h)

Figure 2. Schlieren images and isothermal lines for Ra1 = 2.0 × 109 in a box of height 0.6 m
and width 0.05m and (a) t = 30 s, (b) t = 35 s, (c) t = 40 s, (d) t = 45 s, (e) t = 50 s, (f ) t = 55 s,
(g) t =60 s, and (h) t = 65 s. In each pair of frames, the left one was obtained experimentally
with the schlieren technique and the one on the right numerically using the LBE. The isothermal
lines are spaced �T ∗ = 0.1. The † symbol in (g) indicates a travelling instability.

of 10−3 m and in the numerical simulations, it is the topmost position of the isotherm
with temperature 1.01T0. The position of the topmost point of the thermal plume is
shown in figure 3(a). The errors between the experimental results and the numerical
results, defined as the maximum of the relative difference between the experimental
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Figure 3. (a) Topmost vertical position of the wall plume. The experimental and numerical
results for Ra1 are shown by � and the full line respectively, for Ra2 by + and the dashed
curve and for Ra3 by � and the dotted curve. (b) Topmost vertical position of the wall plume
as a function of time for Ra = 1×107. The dashed vertical lines separate the three main stages.

0.6

0.7

0.8

0.9

1.0

0.2 0.4 0.6 0.8 1.0

y/
L

tvy /L0

(a) (b)

106

107

108

Ra = 109

10–8

10–6

10–4

10–2

106 107 108 109 1010

a y
 (

m
 s

–2
)

Ra

Figure 4. (a) Vertical growth scaled with the inverse of the height of the cavity as a function
of the time scaled with the vertical velocity corresponding to the second stage of the plume
and the inverse of the characteristic length. (b) Vertical acceleration ay of the topmost position
of the starting wall plume (�) and of the thermal centre (×) as a function of Ra. Both
accelerations obey scaling relations with α = 1.06 ± 0.01 and α = 0.964 ± 0.004 for the former
and the latter respectively. The solid line corresponds to α = 1.

and numerical value with respect to the experimental one, are not greater than 3.8%,
6.9% and 10.7% for Ra1, Ra2 and Ra3 respectively. This indicates that the lattice
Boltzmann method is a valid numerical scheme in the laminar and transition regimes
and underestimates the experimental results in the turbulent regime.

The growth of the wall plume takes place in three stages as shown in figure 3(b) for
Ra = 107. In the first stage the plume ascends with a constant acceleration which ends
at about t =300 s where a second stage with approximate constant velocity can be
identified. The durations of these two stages are �t1 and �t2 respectively. In the third
stage, due to the influence of the upper wall, a negative acceleration is present. This
description agrees with that given by Kaminski & Jaupart (2003) for symmetrical
plumes. In the first stage, the buoyancy force of the plume is greater than the viscous
dissipation, while in the second they are balanced. In figure 4(a) the topmost vertical
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Figure 5. (a) Vertical velocity of the topmost position corresponding to the second stage of
the starting wall plume (�) and of its thermal centre (×) as a function of Ra. Both obey a
scaling relation with β = 0.399 ± 0.005 and β = 0.0394 ± 0.003 for the former and the latter
respectively, shown as curves. (b) A representation of the wall plume by ellipses obtained from
a numerical simulation for Ra1. The bottom left-hand corner is the point where the conductive
wall meets the adiabatic wall. The ellipse nearest to the bottom represents the wall plume at
t = 30 s, the other ellipses represent the plume at 5 s intervals.

position of the plume, scaled with the inverse of the total height of the cavity, as
a function of time, scaled with the constant vertical velocity of the second stage
and the inverse of L0, is plotted for several Rayleigh numbers. The fact that the
four cases considered almost collapse on a single curve is evidence that the vertical
velocity during the second stage is of fundamental importance in the description of
the phenomenon.

In analogy with the centre of mass of a body, the thermal centre r tc is defined by

r tc(t) =

∫
A(t)

rT (r, t)d2r
[∫

A(t)

T (r, t)d2r
]−1

(4.2)

where A(t) is the area occupied by the plume at time t and T (r, t) is the temperature
distribution at time t . This quantity can be readily found both in experiments
and in numerical simulations and may furnish a better understanding of the wall
plume. Higher moments can also be found. The vertical component of r tc behaves
qualitatively like the vertical position of the topmost part of the plume as shown in
figure 4(b) for the acceleration in the first stage and in figure 5(a) for the velocity
in the second stage. The vertical acceleration ay scales with the Rayleigh number as
ay ∼ Raα with α ∼ 1, and the vertical velocity vy in the second stage also obeys a
power law of the form vy ∼ Raβ with β ∼ 0.4. Moses et al. (1993) found for a rising
laminar symmetrical plume that β = 0.5 ± 0.1 for several substances and in particular
for water, β ∼ 0.4. The duration of the first and second stages �ti , i =1, 2 also obey
power laws �ti ∼ Raγ with γ ∼ −1/2.

The ascending vortex in the starting plume can be represented to first order by r tc(t)
and to second order as an ellipse centred around r tc(t) with semi-axes σx(t) and σy(t),
the standard deviations of the thermal centre in the x- and y-directions respectively.
This simplified description is shown figure 5(b) where it is evident that the major
semi-axis of the ellipse switches from the vertical to the horizontal directions in time.
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5. Concluding remarks
The LBE approach used in this paper treats temperature as a field coupled with the

particle distribution field. This is a simple way of dealing with temperature, although
at the cost of doubling the number of distribution functions and the use of computer
memory. Although other LBE schemes with energy transport can in principle be
applied to the same problem (see Lallemand & Luo 2003a for a list of references)
the agreement with the experimental results, the simplicity of the method and the
possibility of doing simulations with large lattices seem to be sufficient to justify its
usefulness.

It was found that the bounce-back boundary condition was numerically more stable
than the method developed by Inamuro et al. (1995). The scheme used to set the
temperature of the conductive wall was also found to be numerically stable and
capable of setting the temperature as a function of time.

The LBE method captures qualitatively and quantitatively the dynamics of the
wall plume. It is able to reproduce the travelling instabilities in the thermal boundary
layer as shown in figure 2. The shape and position of the top cap of the starting
wall plume obtained with the LBE method are in good agreement with experimental
results using the schlieren technique. The time evolution can be separated in three
stages. In the first, the formation of the wall plume, the acceleration of its topmost
part and that of the thermal centre are similar and follow the same scaling behaviour.
In the second stage, the vertical velocity of the topmost part of the rising plume is
larger than that of the thermal centre due to the fact that in this stage the temperature
distribution inside the plume T (r, t) plays an important role. However, both velocities
show the same scaling behaviour. The thermal centre and its moments can be used
to obtain information on the behaviour of the wall plume and can prove useful in
other situations.

Stimulating discussions with E. Ramos are gratefully acknowledged. The comments
and questions posed by one of the referees have enriched the contents of this
paper. This work was supported in part by projects DGAPA-UNAM IN109602 and
CONACyT U41347-F.
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